

March 2024 [Cross-ministerial Strategic Innovation Promotion Program (SIP) Phase 3 / Construction of smart mobility platform / Development of infrastructure and onboard sensor systems that utilize compact LiDAR technology to understand the actual situations of streets in living areas and busy districts]

京都大学

Commissionees: Kanazawa University, Kyoto University 《 金沢大学 ·


Table of Contents

- Research Background (p.3~p.4)
- Overview of R&D (p.5)
- Progress Schedule (p.6)
- R&D Goals (p.7~ p.8) ►
- R&D Results of Current Fiscal Year (p.9~p.21)
- Level of Achievement of Objectives (p.22)
- R&D Items and Roadmap (p.23) ►
- Implementation Structure (p.24)

Research Background

- Sensing of infrastructure
 - Monitoring the flow of people and traffic, sensing approaching cars, etc.
 - Cooperate with autonomous driving systems
 - RoAD to the L4 Project, etc.
- Importance of LiDAR*-based sensing
 - Application to infrastructure sensors
 - Effective from perspectives of privacy and resolution
 - Application to on-board sensors
 - Application to driver-assistance and autonomous driving systems
- Current state of LiDAR
 - Mostly foreign-made and large-size
 - Domestic production is desirable from the perspective of economic security
 - Reducing the size and cost are expected to have a ripple effect on the automotive industry

*Light Detection and Ranging

Research Background

Comparison of conventional semiconductor laser and PCSEL* for LiDAR

Conventional laser

Low brightness: Poor beam quality, wide divergence angle Poor functionality: No native beam scanning

Mechanical scanning

4

Conventional laser

Complex system of lenses and fine adjustments are required to reshape the beam

External, mechanically rotating mirror is required to scan the beam

Bulky, costly LiDAR system: Bottleneck

Photonic crystal laser (PCSEL)

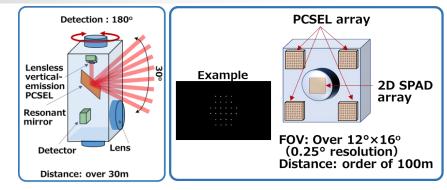
High brightness: High beam quality, narrow
divergence angle (lens-free)High functionality: Capable of multi-dot emission
and native beam scanning

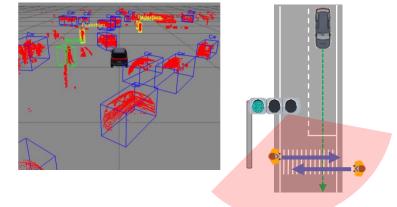
1. 1. 1. 1.

1. 1. 1. 1.

. . 300nm

Dually modulated PC

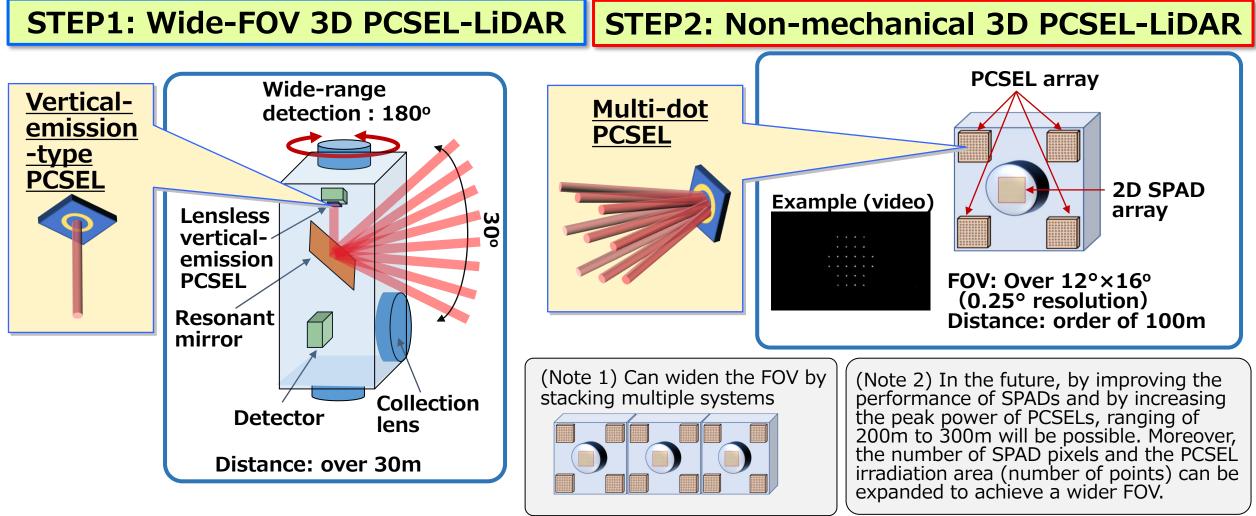

Small, simple, low-cost LiDAR system: Solves the bottleneck


(*PCSEL: <u>Photonic Crystal Surface Emitting Laser</u>)

Overview of R&D

1 Development of 3D PCSEL-LiDAR system (Kyoto Univ.)

- Development of wide-FOV 3D PCSEL-LiDAR (mechanical-type)
 - Use as an infrastructure sensor
 - Use as a sensor for monitoring vehicle blind spots
- Prototyping & development of non-mechanical PCSEL-LiDAR system
 - Development of low-cost electronically scanned LiDAR
- ② Development of recognition technology and conducting field-operational test (Kanazawa Univ.)
 - Development of recognition technology using LiDAR
 - Analysis of point cloud obtained by PCSEL-LiDAR
 - Development of technology for precise detection of vehicles, pedestrians etc.
 - Field-operational test (FOT) using LiDAR
 - Demonstration and verification of use as an infrastructure sensor
 - Expansion to and collaboration with other projects are under consideration
 - Demonstration of autonomous driving using PCSEL-LiDAR
 - Demonstration of L4-equivalent autonomous driving in conjunction with infrastructure sensing

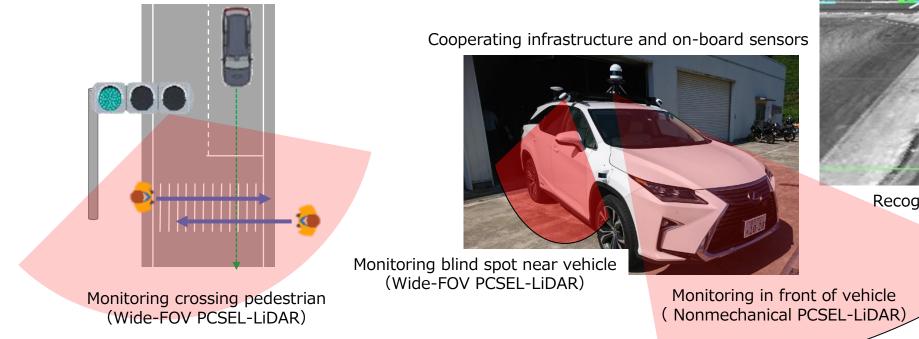


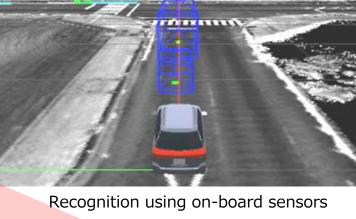
Progress Schedule

6

				2023				2024				20	25		2026				2027			
Working Items			Q 1	Q 2	Q 3	Q 4																
① Develop- ment of 3D PCSEL- LiDAR system	STEP1.	Improvement and fabrication of vertical-emission-type PCSEL																				
		Design and prototyping of wide-FOV 3D PCSEL-LiDAR																				
	STEP2. Development of non- mechanical 3D PCSEL-LiDARJ	Design, fabrication, and deepening of multi-dot emission-type PCSEL																				
		Procurement of SPADs and development of a control unit																				
		Design and development of PCSEL driving circuit																				
		Design and prototyping of nonmechanical 3D PCSEL-LiDAR																				
Additional item	Development of card-type LiDAR	Prototyping of card-type wide-FOV 2D PCSEL-LiDAR																				
	A. Development of recognition technology using LiDARJ	Survey of the latest recognition algorithms																				
		Building a virtual sensing environment																				
② Develop- ment of		Development of recognition algorithms with small-scale computing devices																				
recognition		Improvement of recognition models for expanding detection range																				
technology		Construction of recognition models cooperated with infrastructure and on-vehicle sensors																				
and	B.[Field- operational test (FOT) using LiDAR]	Evaluation of existing LiDAR sensor																				
conducting field- operational test		Public road experiment with existing LiDAR sensor																				
		FOT with wide-FOV LiDAR as infrastructure sensor																				
		FOT with wide-FOV LiDAR as on-vehicle sensor																				
		Construction of test vehicles equipped with multiple PCSEL-LiDAR, etc.																				
		FOT cooperated with infrastructure sensors and on-vehicle sensors																				

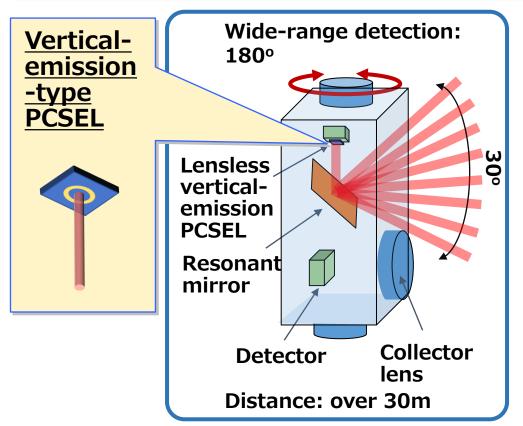
R&D Goals : ① 3D PCSEL-LiDAR System


For use as an infrastructure sensor and a sensor that measures distances in a 7 vehicle's blind spots For realizing all-semiconductor chips, which are expected to be smaller and less expensive, and for use as a general sensor for vehicles


R&D Goal : 2 Development of Recognition Technology and Conducting Field-operational Test

Mid-term goal : Conducting FOT using infrastructure sensing

Development of recognition algorithms using wide-FOV 3D PCSEL-LiDAR, and conducting field operational test Final goal : Conducting FOT of level4 equivalent autonomous driving

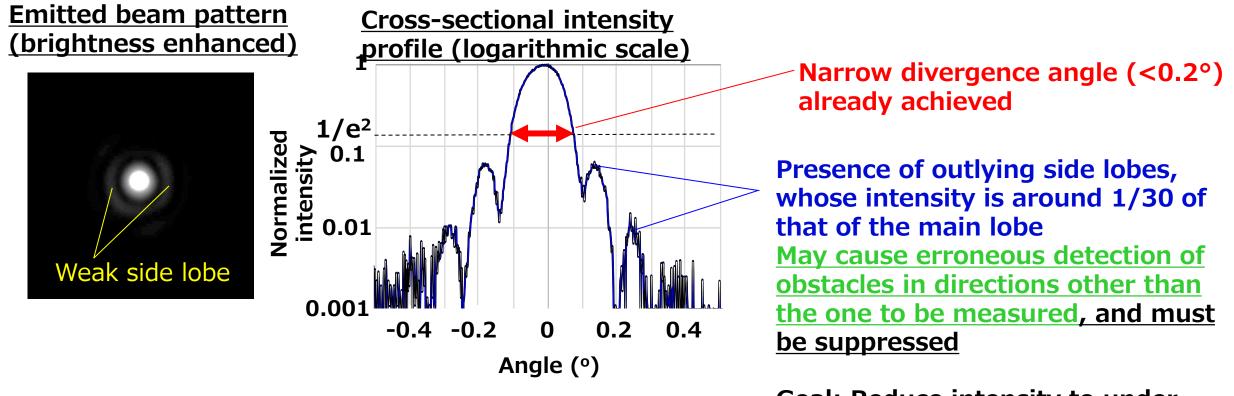

Development of recognition algorithms using multi PCSEL-LiDAR, and conducting field operational test with cooperating infrastructure and on-board sensors.

Result of Current FY: Development of Wide-FOV 3D PCSEL-LiDAR

STEP1 : Wide-FOV 3D PCSEL-LiDAR

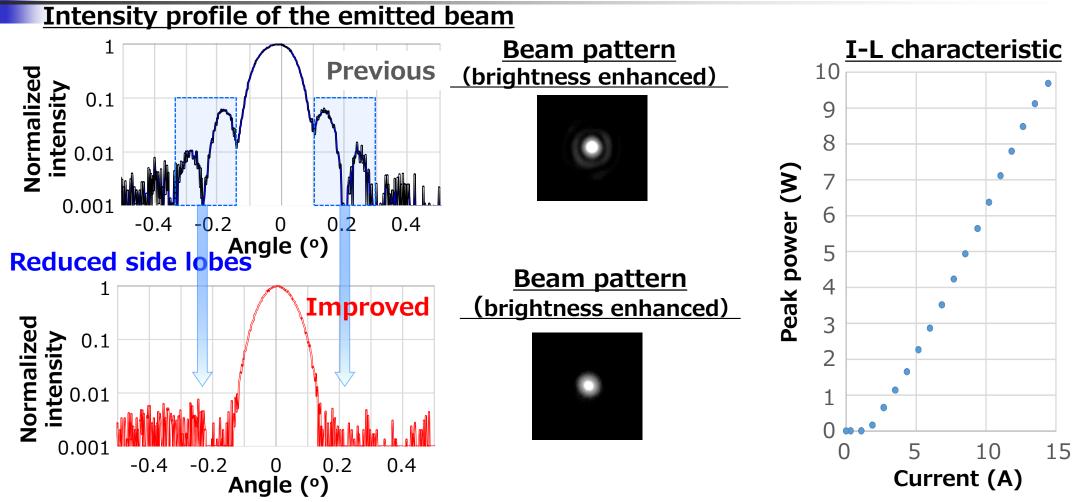
Development items

(red text is progress in the current FY)


- Improvements of vertical-emissiontype PCSEL (realizing an ideal Gaussian beam) and fabrication
- Prototyping of 3D PCSEL-LiDAR

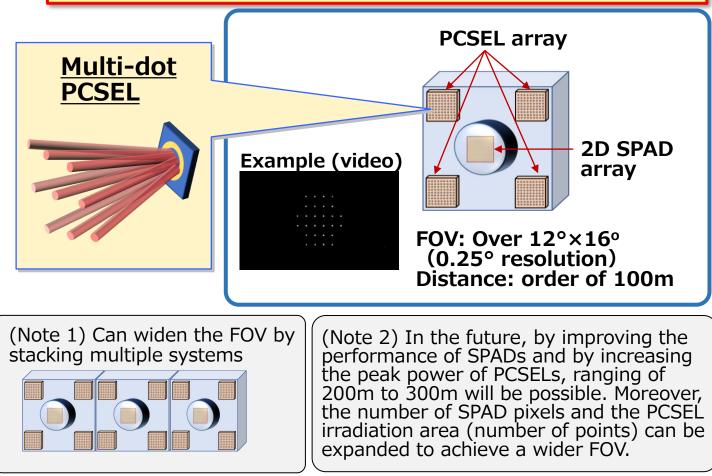
Additional item for inter-project collaboration: Prototyping of card-type 2D wide-FOV PCSEL)

For use as an infrastructure sensor and a sensor that measures distances in a vehicle's blind spots


Realizing an Ideal Gaussian Beam with a Vertical-emission-type PCSEL

Device used in 2D PCSEL-LiDAR up until now

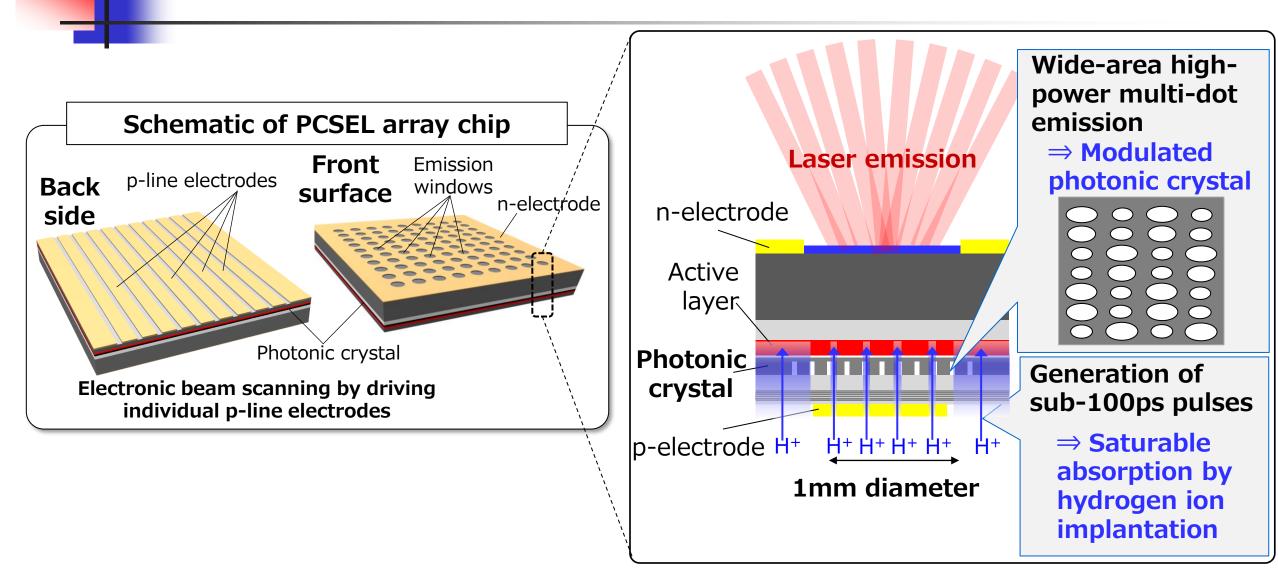
Goal: Reduce intensity to under 1/1000 that of the main lobe


Measured Lasing Characteristics of Fabricated PCSEL

Successfully realized side-lobe reduction + high-power operation Next step: Provide to Hokuyo Automatic (recommissioning company) for development of wide-FOV 3D PCSEL-LiDAR

Result of Current FY: Development of Non-mechanical 3D PCSEL-LiDAR

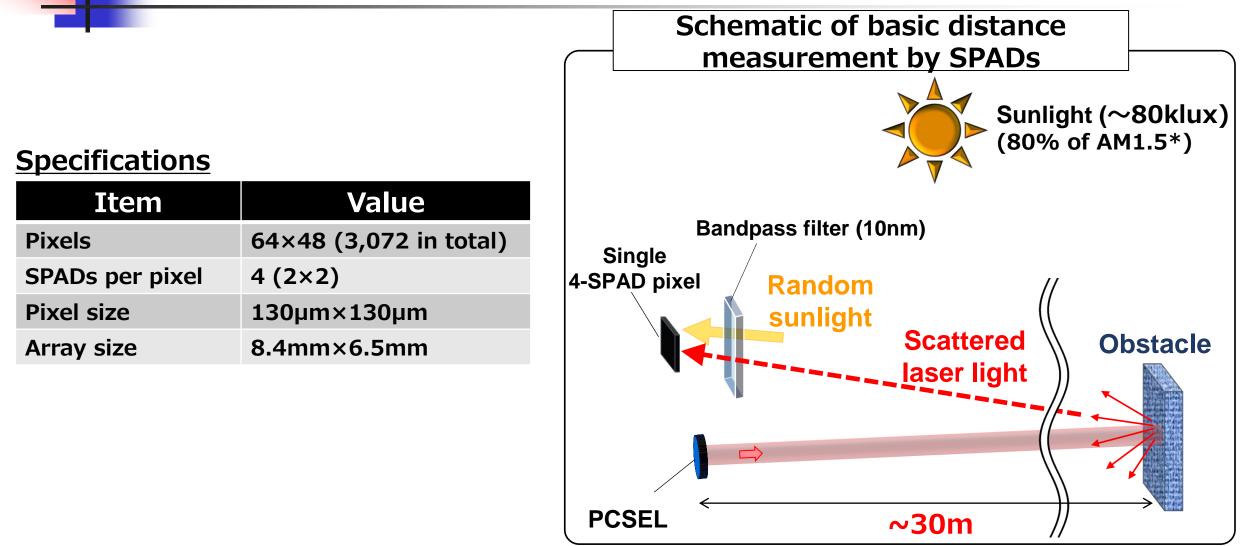
STEP2: Non-mechanical 3D PCSEL-LiDAR



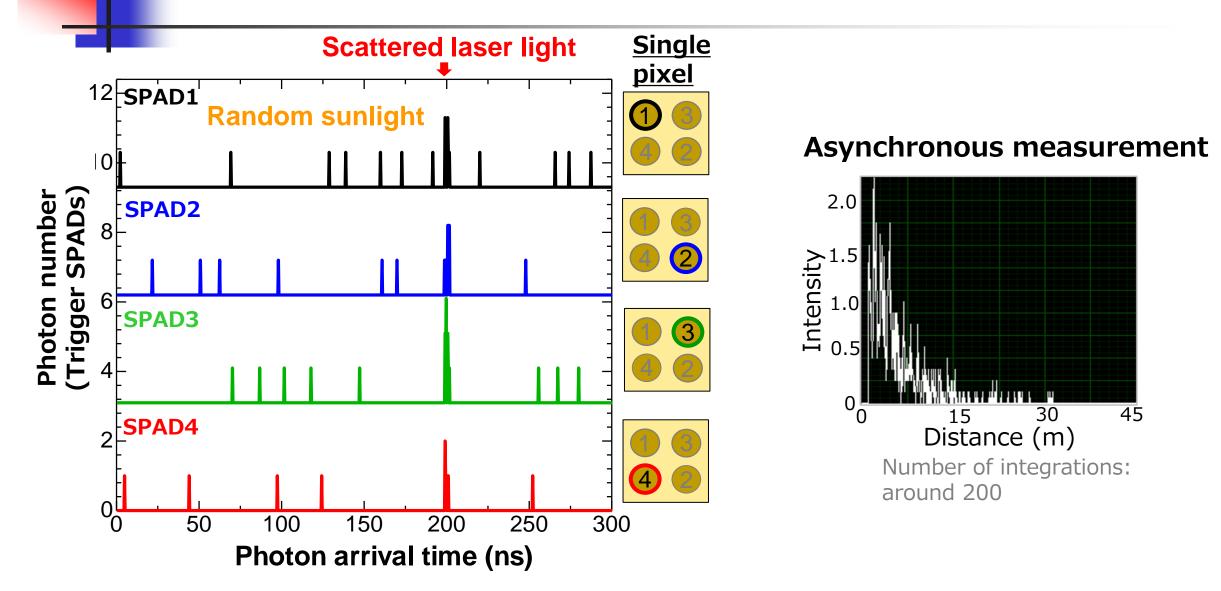
For realizing all-semiconductor chips, which are expected to be smaller and less expensive, and for use as a general sensor for vehicles

Development items (red text is progress in the current FY)

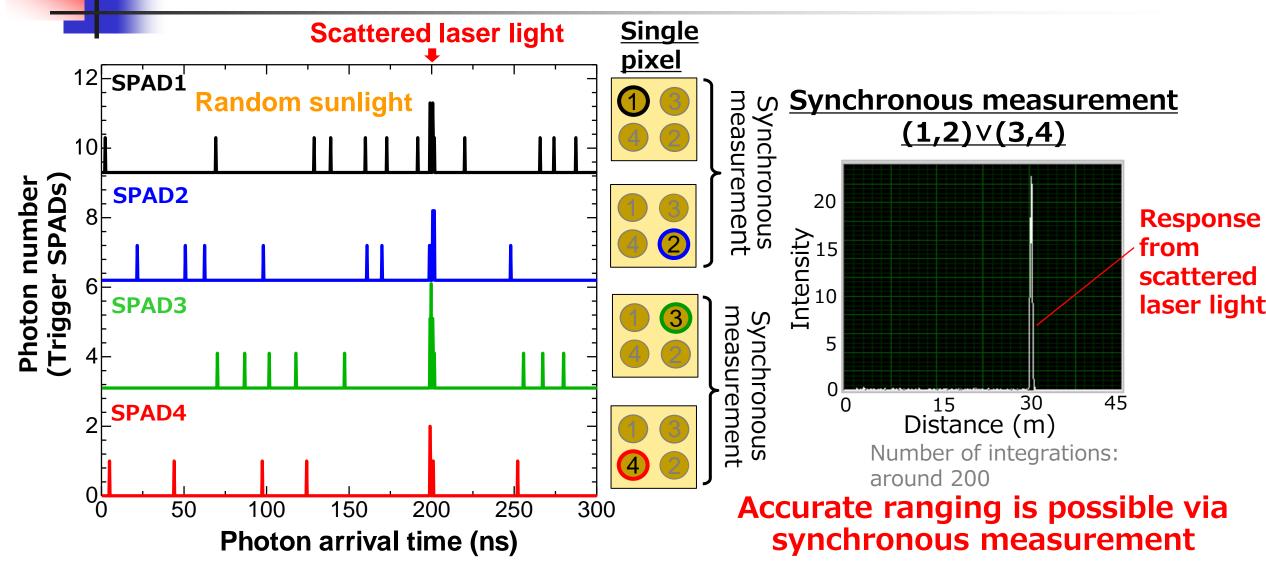
- Design and fabrication of multi-dot-emission, ultrashort-pulse PCSEL
- Procurement and evaluation of 2D SPAD array
- Fabrication of PCSEL driving circuit and design and prototyping of nonmechanical 3D PCSEL-LiDAR
- Theoretical verification of 200m-300m ranging


Multi-dot-emission, Ultra-short-pulse PCSEL

Completed basic design of modulated PCSEL with saturable absorption


13

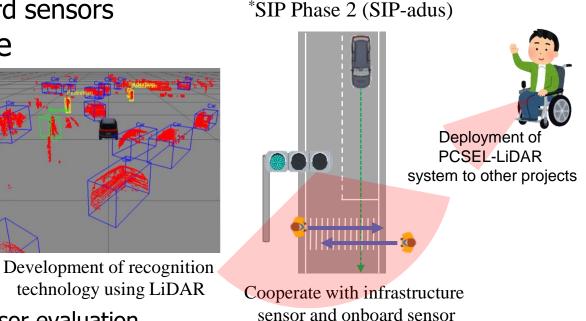
Procurement and Basic Evaluation of 2D SPAD



*AM1.5 : World-standard Air Mass 1.5 solar intensity (1kW/m²), illuminance \sim 100klux

Basic Evaluation of SPADs

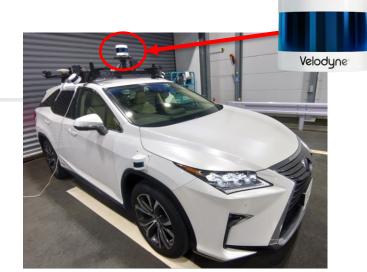
Basic Evaluation of SPADs


₁₆ Next step: Detailed evaluation and design and fabrication of LiDAR system

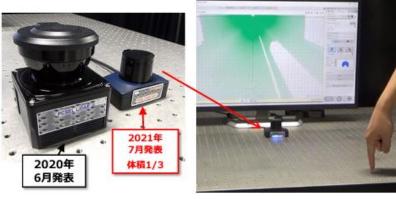
Development of Recognition Technology and Field-operational Test

Achievement of SIP Phase 2 (SIP-adus)*

- Autonomous driving system
 - R&D of recognition technology using on-board sensors
- Field-operational test using infrastructure
 - FOTs at Tokyo waterfront area
- R&D contents in this project
 - Development of recognition technology using LiDAR
 - Applying LiDAR to infrastructure sensor
 - Monitoring crossing pedestrians, etc.
 - Utilizing LiDAR as onboard sensor
 - Development of recognition technology and sensor evaluation
 - Field-operational test (FOT) using LiDAR
 - Deployment of PCSEL-LiDAR system to other projects
 - Testing of level 4-equivalent autonomous driving with cooperating infrastructure sensors



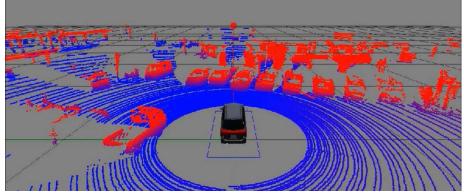
17


Overview of R&D in FY2023

- Survey of LiDAR recognition algorithms
 - Basic study of recognition technology to be developed
 - Basic implementation of object detection DNN * model
- Evaluation test of existing LiDAR sensor
 - Evaluation under diverse weather conditions
 - Testing at Japan Automobile Research Institute (JARI) under backlighting, rain, and fog conditions
 - Recognition distance evaluation of existing 3D LiDAR sensors
 - Understanding the characteristics of existing LiDAR
 - Evaluation focus on VLS-128AP made by Velodyne (Ouster)
 - Latest types of another LiDAR will also be evaluated
 - Evaluation of 2D PCSEL-LiDAR
 - Testing PCSEL-LiDAR developed in SIP Phase 2 in outdoor environments

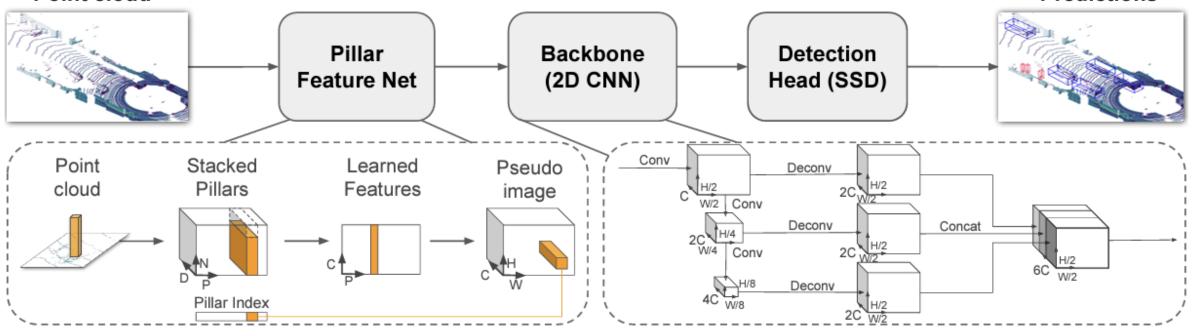
Velodyne (Ouster) VLS-128AP

Contents	Sensor specification
Range	300m@10% targets
Resolution	Horizontal 0.2° @10Hz Vertical 0.11~5°
Field of View(FOV)	Horizontal360°, Vertical 40°



2D PCSEL-LiDAR

*DNN: Deep Neural Network


Implementation of LiDAR Object Detection Model

- 3D object detection using LiDAR
 - Detecting traffic participants as bounding box
 - Vehicles, pedestrians, cyclists, etc.
- Implementation of basis object detection DNN model
 - Representative model : PointPillars [A. H. Lang, et al., 2018]
 - DNN* model detecting arbitrary number of 3D boxes in LiDAR point cloud
 *Deep Neural Network

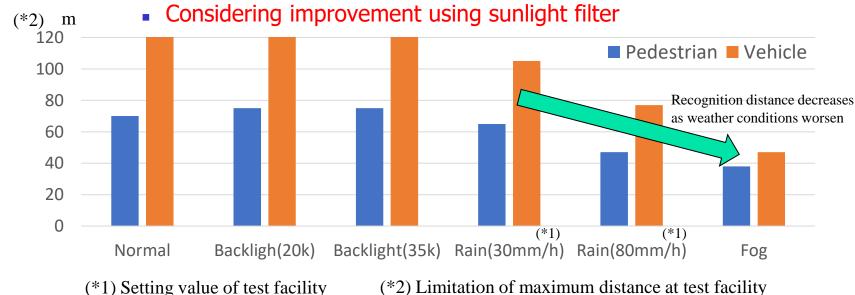
Point cloud obtained from 3D LiDAR

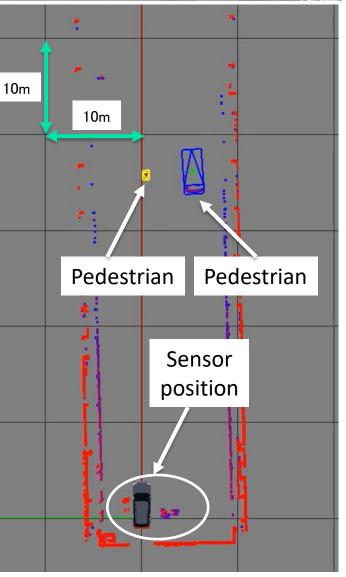
Predictions

Point cloud

Evaluation test at JARI's test facility

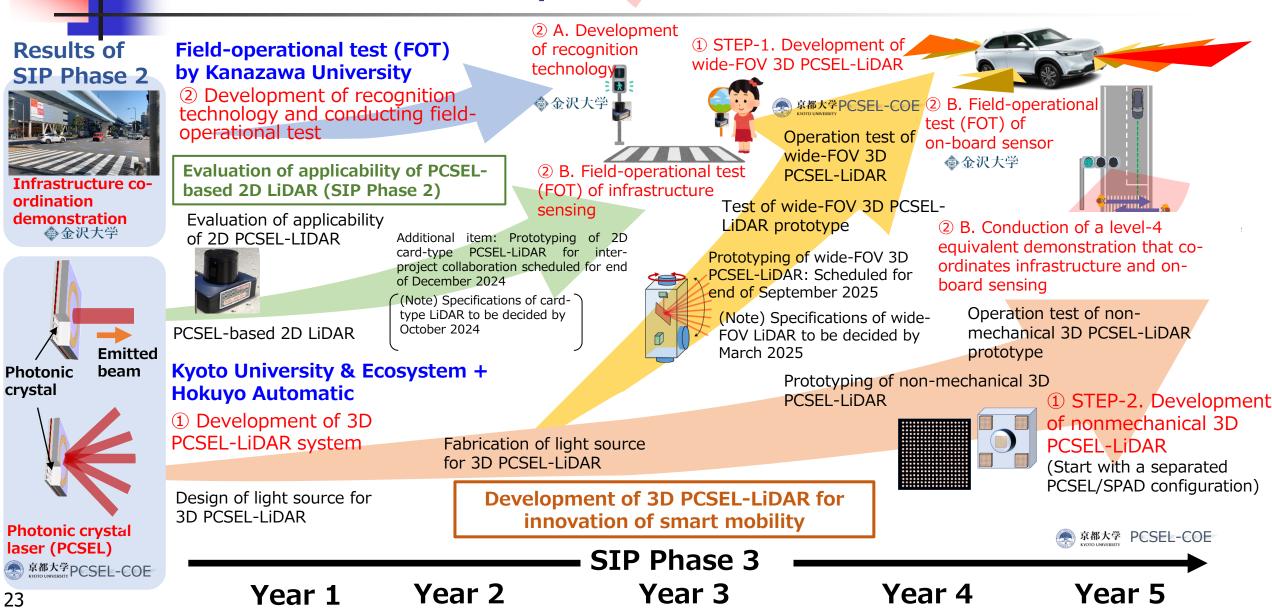
- Conditions
 - Normal (indoor environment under fluorescent lighting)
 - Backlight: Sunlight equivalent to 3:00PM and 5:00PM on fine day
 - Illuminance: 35,000lux (3:00PM), 20,000lux (5:00PM)
 - Color temperature: 6000K (daylight white), 2000K (amber white)
 - Rainfall: Rates of 30 and 80mm/h
 - Fog: Visibility distance of 50m
- Measurement targets
 - Vehicle: White Prius
 - Pedestrian: wearing a black coat, raincoat
- Evaluating detectable distance using LiDAR object detection model



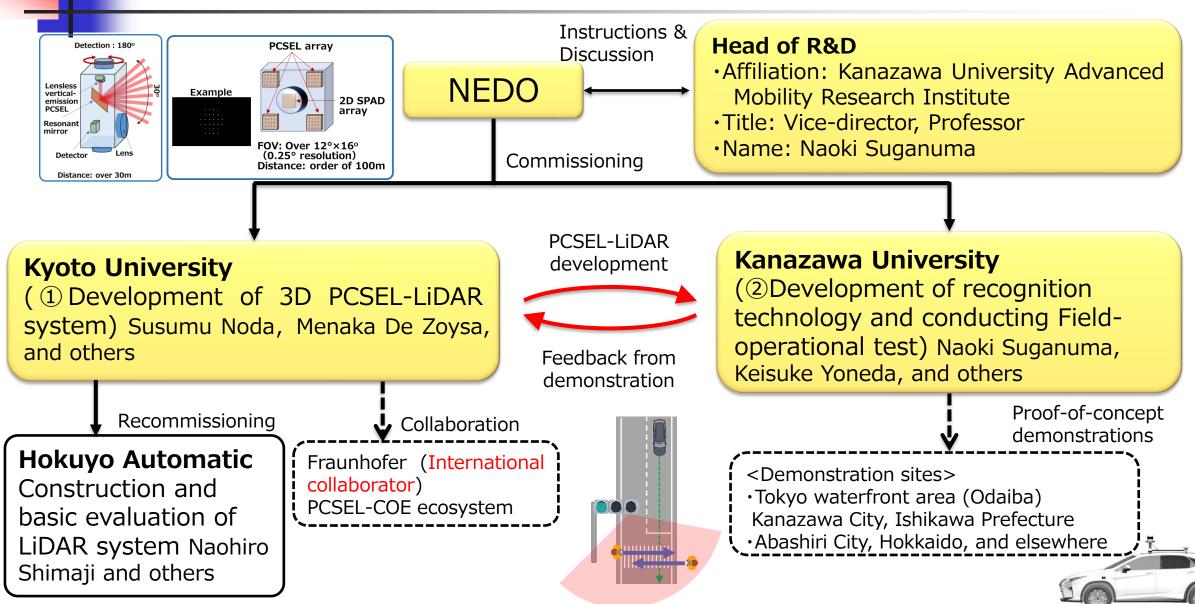


Evaluation Results of Existing LiDAR

- Evaluation of recognition distance of 3D LiDAR (Velodyne VLS-128)
 - Normal and backlight conditions
 - Detecting vehicle over 120m and pedestrian up to approximately 70m
 - Low dependency on backlight
 - Bad weather conditions like rain and fog
 - Tendency to decrease recognition distance
- Current issue of 2D PCSEL-LiDAR
 - Phenomenon of point cloud data affected by westering sun



Progress Schedule


	Moulting Thomas			2023			2024				2025					2026				2027			
Working Items			Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	
① Develop- ment of 3D	STEP1. [Development of wide-FOV 3D PCSEL-LiDAR]	Improvement and fabrication of vertical-emission-type PCSEL		-	TRL	5~6	т	RL7															
		Design and prototyping of wide-FOV 3D PCSEL-LiDAR		٦	rrl2	2~3				Т	RL5	-6			ſ	TRI	_7						
PCSEL-	STEP2. Development of non-mechanical 3D PCSEL- LiDARJ	Design, fabrication, and deepening of multi-dot emission-type PCSEL			RL3	8∼4			TRL	5		TR	L6				TR	RL7					
Lidar		Procurement of SPADs and development of a control unit		٦	rrl2	2~3			TRL	4~5	5	TR					TR	RL7					
system		Design and development of PCSEL driving circuit			TR	L2			TRL	3~4		TR	L5∿	6م				TR	L7				
		Design and prototyping of nonmechanical 3D PCSEL-LiDAR			TR	L2					TR	L3~	4		-	TRL	5~6				TR	L7	
Additional item	Development of card-type LiDAR	Prototyping of card-type wide-FOV 2D PCSEL-LiDAR			TR	L2	٦	RL5	~6														
	A. [Development of recognition technology using LiDAR]	Survey of the latest recognition algorithms			TRL	2~3																	
		Building a virtual sensing environment						TRL	.3~4	1													
② Develop-		Development of recognition algorithms with small-scale computing devices										TRI	_5										
ment of		Improvement of recognition models for expanding detection range														TRI	.5~6	6					
recognition technology		Construction of recognition models cooperated with infrastructure and on-vehicle sensors																		TR	L7		
and conducting field- operational test	B. 「Field- operational test (FOT) using LiDAR」	Evaluation of existing LiDAR sensor			RL1	~2																	
		Public road experiment with existing LiDAR sensor		1	RL4	~5		T	RL5 [,]	~6													
		FOT with wide-FOV LiDAR as infrastructure sensor										1	TR	L5									
		FOT with wide-FOV LiDAR as on-vehicle sensor										-				TR	L5~	6					
		Construction of test vehicles equipped with multiple PCSEL-LiDAR, etc.														TRI	.5~	6		↓	,		
		FOT cooperated with infrastructure sensors and on-vehicle sensors																		TR	L7		

R&D Items & Roadmap

Collaboration with other projects

Implementation Structure

This report partially includes the results of Cross-ministerial Strategic Innovation Promotion Program (SIP) 3rd Phase, Development of Smart Mobility Platform" promoted by Council for Science, Technology and Innovation, Cabinet Office. (Project Management Agency : New Energy and Industrial Technology Development Organization (NEDO) (Project Code JPNP23023)).